skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hattori, Alex"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Methods for the straightforward, room temperature synthesis of UO 2+ x nanoparticles and thin films using solution processable, molecular uranium( iv ) compounds is described. Ultra-small uranium dioxide nanoparticles are synthesized from the hydrolysis of either U(ditox) 4 (ditox = − OCH t Bu 2 ) (1) or U(CH 2 SiMe 2 NSiMe 3 )[N(SiMe 3 ) 2 ] 2 (2) via addition of water to stirring solutions of the compounds in non-polar solvents to give UO 2 -1 and UO 2 -2, respectively. The structural characteristics of the uranium dioxide nanoparticles were characterized using powder X-ray diffraction (pXRD), high-resolution transmission electron microscopy (HRTEM), and Raman spectroscopy. The pXRD results affirm the cubic fluorite structure expected for UO 2 nanoparticles. The nanocrystallinity of UO 2 -1 and UO 2 -2 were substantiated by bright-field HRTEM images and fast Fourier transform (FFT) patterns. The HRTEM analysis also shows the nanoparticles fall within the ultra-small regime possessing sizes of ∼3 nm with uniform distribution. Additionally, we demonstrate the versatility of 1 as a uranium dioxide precursor, showing that it can be readily sublimed onto glass or silicon substrates and subsequently hydrolyzed to give UO 2+ x thin films. 
    more » « less